

PCIE EtherCAT Motion Control Card

PCIE464

This manual is mainly for PCIE464-AX16, PCIE464-AX32, PCIE464-AX64.

Vision Motion Controller

Motion Controller

Motion Control Card

IO Expansion Module

HMI

Statement

Thank you for choosing our Zmotion products. Please be sure to read this manual carefully before use so that you can use this product correctly and safely. Zmotion is not responsible for any direct or indirect losses caused by the use of this product.

The copyright of this manual belongs to Shenzhen Zmotion Technology Co., Ltd. And reproduction, translation, and plagiarism of any content in this manual in any form is strictly prohibited without the written permission of Zmotion.

The information in this manual is for reference only. Due to design improvements and other reasons, Zmotion reserves the right of final interpretation of this information! Contents are subject to change without prior notice!

Notes

In order to prevent possible harm and damage caused by incorrect use of this product, the following instructions are given on matters that must be observed.

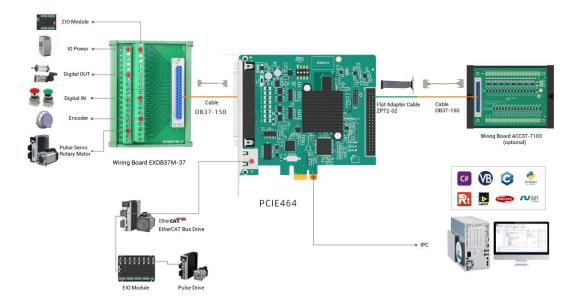
Danger

Do not use it in places with water, corrosive or flammable gases, or near	
flammable substances.	May cause
When installing or disassembling, make sure the product is powered off.	electric
Cables should be connected securely, and exposed parts that are	shock, fire,
energized must be insulated by insulators.	damage,
Wiring work must be performed by professionals.	etc.

■ Notes

It should be installed within the specified environmental range.	
Make sure there are no foreign objects on the product hardware circuit	May sauss
board.	May cause
After installation, the product and the mounting bracket should be tight	damage,
and firm.	mis-
After installation, at least 2-3cm should be left between the product and	operation,
surrounding components for ventilation and replacement.	etc.
Never disassemble, modify, or repair it by yourself.	

Content

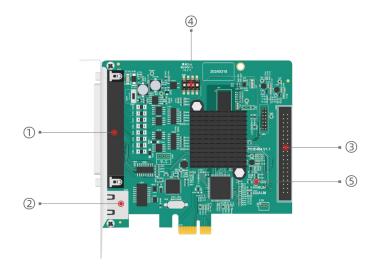

Chapter I	Production Information	4
1.1.	Product Information	4
1.2.	Interface Introduction	5
1.3.	Product Specification	6
1.4.	Order Information	8
1.5.	Application Environment	9
1.6.	Hardware Installment	9
Chapter II	Hardware Interface	11
2.1.	J400 Signal Interface	11
2.2.	X400 Signal Interface	13
2.3.	IO Power Input	14
2.4.	CAN Communication Interface	15
2.5.	IN Digital Input Interface	18
2.6.	OUT Digital Output Interface	20
2.7.	Local-Axis Interface	22
2.8.	Single-Ended Axis Interface	25
2.9.	EtherCAT Bus Interface / Ethernet	28
2.10.	DIP Switch	31
Chapter II	l Resources Expansion	33
3.1.	IO CAN Bus Expansion	33
3.2.	EtherCAT Bus Expansion	37
Chapter I\	/ Accessories	41
4.1.	EXDB37M-37 Wiring Board	41
4.2.	DB37-150 Shielded Cable	41
4.3.	ACC37 Wiring Board	42
4.4.	ZP72-02 Adapter Cable	43
Chapter V	Installation	44
5.1.	PCIE464 Installation	44
5.2.	Drive Program Installation	44
Chapter V	l Programming	51
6.1.	Program in RTSys Software	51
6.2.	Upgrade Controller Firmware	56
6.3.	Program in Host-Computer by PC Languages	57
Chapter V	II Operation and Maintain	60
7.1.	Regular Inspection and Maintenance	60
7 2	Common Problems & Solutions	61

Chapter I Production Information

1.1. Product Information

PCIE464 is a kind of EtherCAT + Pulse motion control card that is with PCIE interface, then it can control several stepper motors or digital servo motors.

PCIE464 motion control card can be applied in multi-axis point to point, interpolation motion, trajectory planning, handwheel control, encoder position measurement, IO control, position latch, etc.



- Support encoder position measurement, which can be configured as handwheel input mode.
- Support HW hardware comparison output, high-speed latch, PWM, and other special functions.
- The X400 signal interface supports 32-channel for IN & OUT (ACC37 wiring board can be connected to together to select IO channels)
- The max output current of OUT can reach 300mA, which can drive some solenoid valves.

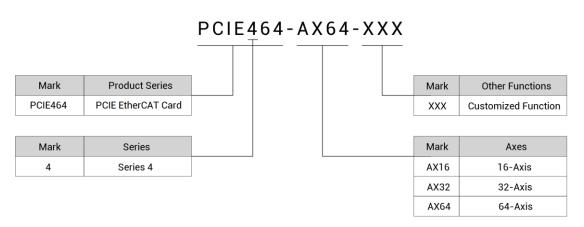
- Support many motion control functions, such as, point to point, electronic cam, linear interpolation, circular interpolation, continuous interpolation, manipulator command, etc.
- **♣** Support pulse closed loop, and pitch compensation.

PCIE464 motion control card is applied in high-speed and high-precision situation, like, 3C electronics processing, detection equipment, semiconductor equipment, SMT processing, laser processing, optical communication equipment, lithium battery and photovoltaic equipment, and non-standard automated equipment.

1.2. Interface Introduction

No.	Interface	Description
	IO Power	Connect to 24V DC power supply
	CAN J400	Connect to CAN expansion module to expand
1)		resources.
		It is one multi-functional signal interface, which
		connects to wiring board, including pulse signal
		output, encoder input, and IO interface.
2	J600	EtherCAT interface

	X400	I/O control signal, for more IOs, please use together		
3		with ACC37 wiring board.		
4	S200 DIP switch, used to set ID of PCIE464			
		POW: ON when the power is connected		
\$	Controller State Led	RUN: ON when it runs normally		
		ALM: ON when it runs wrongly		


1.3. Product Specification

Model	PCIE464-AX64	PCIE464- AX16	PCIE464- AX32	
	64 Axes:			
	• 4 pulse-axis (1 differential	16 Axes:	32 Axes:	
	axis + 3 IO single-ended	others are	others are	
Basic Axes	axes)	same as	same as	
	• 3 encoders (1 differential	PCIE464-	PCIE464-	
	encoder + 2 24V single-	AX64	AX64	
	ended encoders)			
Total Axes	64-Axis (basic axis + virtual axis)			
EtherCAT Bus Axis	✓			
IN Single-Ended	2			
Encoder Axis	2			
OUT Single-Ended	2 (pulse + directional)			
Pulse Axis	3 (pulse + directional)			
Digital IN	24 (general), INO-7 are high-speed inputs			
Digital OUT	24 (general), OUT0-7 are high-speed outputs			
Expanded Digital IN	≤4096			

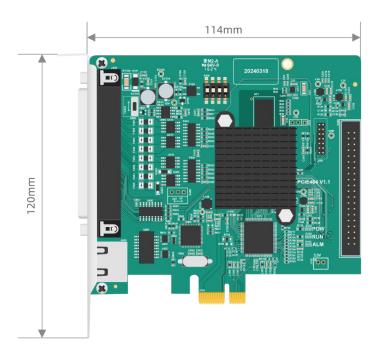
Expanded Digital	≤4096
OUT	24030
EtherCAT	1
High-Speed Latch	4
Hardware	
Comparison Output	8
HW	
General PWM	8
Point to Point	
Electronic Cam	
Linear Interpolation	
Circular	
Interpolation	✓
Continuous	
Interpolation	
Manipulator	
Command	
Program Space	1920kbyte
Power Down	✓
Storage	
Dimension (mm)	144*120

1.4. Order Information

Nameplate Information

> Order Information

No.	Model	Specification Description		
PCIE464- 16 EtherCAT axes, it supports linear interpolation		16 EtherCAT axes, it supports linear interpolation, any circular		
	AX16	interpolation, helical interpolation, hardware comparison output.		
PCIE464-		32 EtherCAT axes, it supports linear interpolation, any circular		
2	AX32	interpolation, helical interpolation, hardware comparison output.		
PCIE464-		64 EtherCAT axes, it supports linear interpolation, any circular		
3	AX64	interpolation, helical interpolation, hardware comparison output.		


> Models of PCIE464 accessories:

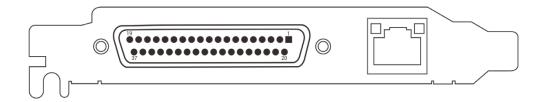
Name	Model	Specification Description	Description	
Shielded Cable	DB37-150	DB37 cable (chip of male to male)	Optional	
W		DB37 wiring board (convert	Ontional	
Wiring Board	EXDB37M-37	terminals)	Optional	
Adapter Cable	7072.02	Flat cable (convert 40P plug to DB37	Ontional	
Adapter Cable ZP72-02		female head)	Optional	
Wiring Doord	ACC27 7102	16 IN & 16 OUT digital wiring board	0 11 1	
Wiring Board	ACC37-7103	after changing IDC40 as DB37.	Optional	

1.5. Application Environment

Item		Parameters		
Work T	emperature	-10℃-55℃		
Work rela	ative Humidity	10%-95% non-condensing		
Storage	Temperature	-40°C ~80°C (not frozen)		
Storaç	ge Humidity	Below 90%RH (no frost)		
	Frequency	5-150Hz		
vibration	Displacement	3.5mm(directly install)(<9Hz)		
Vibration	Acceleration	1g(directly install)(>9Hz)		
Direction		3 axial direction		
Shock (collide)		15g, 11ms, half sinusoid, 3 axial direction		
Degree of Protection		ree of Protection IP20		

1.6. Hardware Installment

The card slot interface is designed according to PCIE*1 standard card, which means it can be compatible with PCIE*1 ~ PCIE*16.


- PCIE doesn't support plug in or pull out when in hot, so please close the computer before inserting and pulling the card.
- Please handle it carefully. Before touching the control card circuit or inserting/pulling the control card, please wear anti-static gloves or touch an effectively grounded metal object to discharge the human body to prevent possible static electricity from damaging the motion control card.

Chapter II Hardware Interface

2.1. J400 Signal Interface

J400 is the main interface of PCIE464 motor control and I/O signal control. Signal terminal is shown as below.

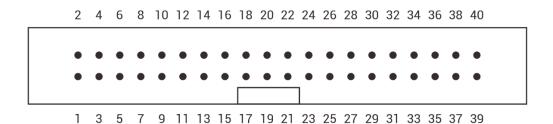
For terminals, please refer to "single-ended axis interface", "IN digital input", and "OUT digital output".

DIM	PIN Name Description			ı	Functions
PIN	Name	Description	1	2	3
1	VCC5	Internal 5V OUT, 300mA	/	/	/
2	EA0+	A + of Encoder 0	/	/	/
3	EA0-	A - of Encoder 0	/	/	/
4	EB0+	B + of Encoder 0	/	/	/
5	EB0-	B - of Encoder 0	/	/	/
6	EZ0+	Z + of Encoder 0	/	/	/
7	EZ0-	Z - of Encoder 0	/	/	/
8	GND	Internal power ground	Internal power ground / /		/
9	IN0	High-speed IN0 (isolated)	Latch	/	/
10	IN1	High-speed IN1 (isolated)	Latch	/	/
11	IN2	High-speed IN2 (isolated)	Latch	/	Z of encoder 3
12	IN3	High-speed IN3 (isolated)	Latch	/	Z of encoder 2
13	IN4	High-speed IN4 (isolated)	/	/	A of encoder 3
14	IN5	High-speed IN5 (isolated)	/	/	B of encoder 3

	T		1	ı	
15	IN6	High-speed IN6 (isolated)	/	/	A of encoder 2
16	IN7	High-speed IN7 (isolated)	/ /		B of encoder 2
1-7	FOND	IO power ground / CAN	,		,
17	EGND	communication public end	/	/	/
18	CANH	CAN signal – High (isolated)	/	/	/
19	CANL	CAN signal – Low (isolated)	/	/	/
20	GND	Internal power ground	/	/	/
21	PUL0+/EA1+	Pulse + of axis 0	/	/	A + of encoder 1
22	PULO-/EA1-	Pulse - of axis 0	/	/	A - of encoder 1
23	DIR0+/EB1+	Directional + of axis 0	/	/	B + of encoder 1
24	DIR0-/EB1-	Directional - of axis 0	/	/	B - of encoder 1
25	EZ1+	/	/	/	Z + of encoder 1
26	EZ1-	/	/	/	Z - of encoder 1
27	OUT0	High-speed OUT0 (isolated)	HW	PWM	/
28	OUT1	High-speed OUT1 (isolated)	HW	PWM	/
29	OUT2	High-speed OUT2 (isolated)	HW	PWM	DIR of axis 3
30	OUT3	High-speed OUT3 (isolated)	HW	PWM	PUL of axis 3
31	OUT4	High-speed OUT4 (isolated)	HW	PWM	DIR of axis 2
32	OUT5	High-speed OUT5 (isolated)	HW	PWM	PUL of axis 2
33	OUT6	High-speed OUT6 (isolated)	HW	PWM	DIR of axis 1
34	OUT7	High-speed OUT7 (isolated)	HW	PWM	PUL of axis 1
35	E5V	External 5V power output	/	/	/
36	E24V	IO 24V power input	/	/	/
37	EGND	IO power ground	/	/	/
1					

Description:

- 1. Max output load of PCIE464 E5V is 300mA, please don't connect to large power load.
- 2. Max current of PCIE464 OUT is 300mA, it can connect to most of loads directly, please calculate the current.
- IN2-7 support single-ended encoder axis, but they only support 24V encoder input. When ATYPE=0, they are general inputs, please attention wiring method.


- 4. OUT2-7 support single-ended pulse axis, For the pulse directional interface of 5V drive, please connect drive PUL+ and DIR+ to E5V. When ATYPE=0, they are general outputs, please attention wiring method.
- 5. VCC5 and GND are used for local pulse axis and encoder axis wiring.
- 6. Local pulse-axis / encoder function of J400 PIN21-PIN26 depends on firmware, that is, it can't be used as IN and OUT at the same time.
- 7. IOs of PCIE464 are isolated IOs, please input from EGND and E24V for IO power supply. Note the positive pole and negative pole.

2.2. X400 Signal Interface

X400 is I/O signal control interface. Use ACC37-7103 adapter board (16 inputs & 16 outputs, PIN No.1 – No.16 corresponds to IN8-IN23, PIN No.21 – No.36 corresponds to OUT8-OUT23) to connect to external device (this adapter board is optional when more IO are needed). For more details, please refer to Chapter IV.

X400 interface itself is the inner IO, is not-isolated signal, which means it can't connect to external devices directly, it needs ACC37 wiring board, or the wiring board that supports isolation function.

Note: when there is no wiring board installed, this interface's IO signals only can be shown in software interface, but the real functions are invalid, that is, it can do normal data transferring / signal interaction.

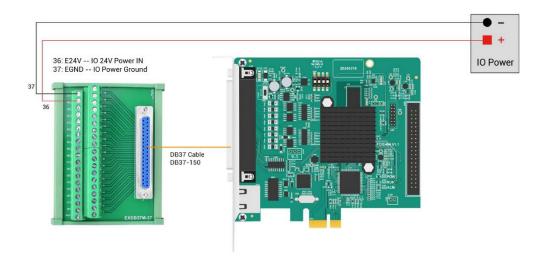
PIN	Name	Description		Name	Description
1	IN8/OUT39	General IO Signal	21	OUT8/IN39	General IO Signal
2	IN9/OUT38	General IO Signal	22	OUT9/IN38	General IO Signal
3	IN10/OUT37	General IO Signal	23	OUT10/IN37	General IO Signal

4	IN11/OUT36	General IO Signal	24	OUT11/IN36	General IO Signal
5	IN12/OUT35	General IO Signal	25	OUT12/IN35	General IO Signal
6	IN13/OUT34	General IO Signal	26	OUT13/IN34	General IO Signal
7	IN14/OUT33	General IO Signal	27	OUT14/IN33	General IO Signal
8	IN15/OUT32	General IO Signal	28	OUT15/IN32	General IO Signal
9	IN16/OUT31	General IO Signal	29	OUT16/IN31	General IO Signal
10	IN17/OUT30	General IO Signal	30	OUT17/IN30	General IO Signal
11	IN18/OUT29	General IO Signal	31	OUT18/IN29	General IO Signal
12	IN19/OUT28	General IO Signal	32	OUT19/IN28	General IO Signal
13	IN20/OUT27	General IO Signal	33	OUT20/IN27	General IO Signal
14	IN21/OUT26	General IO Signal	34	OUT21/IN26	General IO Signal
15	IN22/OUT25	General IO Signal	35	OUT22/IN25	General IO Signal
16	IN23/OUT24	General IO Signal	36	OUT23/IN24	General IO Signal
17	/	/	37	/	/
18	/	/	38	/	/
19	/	/	39	/	/
20	/	/	40	/	/

Note: terminal definition of X400 and AC337 adapter board are the same.

2.3. IO Power Input

Power of I/O signal terminal uses DC24V power supply, which connects to PIN36 (E24V), and PIN37 (EGND) of J400.


If ACC37-7103 wiring board is configured, it also needs power from DC24V power supply. For this, it is connected by EGND and E24V of 5.08mm screw type terminals.

\rightarrow Specification:

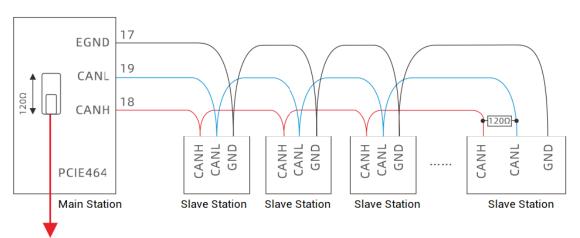
Power Supply	Description
IN voltage	DC24V±5%

Max Power	10W
Anti-inverse	√
Overcurrent Protection	√
Isolated Power	√
Cable Type	Recommend 1 mm ² copper core cable

\rightarrow Wiring:

2.4. CAN Communication Interface

CAN communication interface is connected by PIN18 (CANH) and PIN19 (CANL) of J400. And please note PIN17 (EGND) must be connected to CAN ground of CAN module, that is, achieve grounded to prevent CAN chip from burning out.


Control card's 120Ω terminal resistor on CAN bus is controlled by DIP switch (near to J400 signal), switch the " 120Ω " as ON.

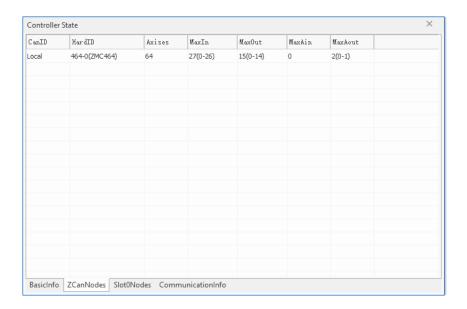
$\rightarrow \textbf{Specification:}$

CAN	Description
Communication Speed Ratio	≤1Mbps
Terminal Resistor	120Ω

Wiring Structure	Daisy Chain Structure	
The number of nodes that can	≤16	
be expanded		
Wiring Length	Recommend <30m (500kbps)	
Communication Distance	√	

→ Wiring:

Dail code as "120Ω", which means one 120ohm resistor is connected in parallel between CANH and CANL.


NOTES

- As above, the daisy chain topology is used for wiring (the star topology structure cannot be used). And the distance between nodes is shorter, it is better.
- Please connect a 120Ω terminal resistor in parallel to each end of the CAN bus for matching the circuit impedance and ensuring communication stability (turn to " 120Ω " as above graphic).
- Please be sure to connect the public ends of each node on the CAN bus to prevent the CAN chip from burning out.
- Please use STP (Shielded Twisted Pair), especially in bad environments, and make sure the shielding layer is fully grounded.

- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 30cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

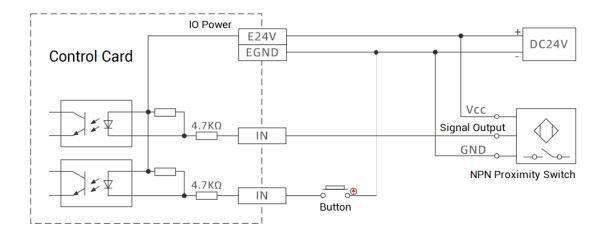
→ Usage:

- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) Configure controller CAN main station:
 - a) Use "CANIO_ADDRESS" command to set main station "address" and "velocity".
 - b) Use "CANIO_ENABLE" command to enable or disable CAN main station function.
 - c) View parameters by "RTSys Controller State the Controller CommunicatioInfo".
 - d) View bus node parameters by "RTSys Controller State the Controller ZCanNodes".

(3) Match "Velocity" and "Address" of CAN slave station module correctly, then complete resource mapping. It can refer to <u>"3.1 CAN Bus Expansion"</u>.

- (4) After setting, restart all stations, then it can communicate normally. If "ALM" led of slave station is ON, which means the communication fails.
- (5) Please note "speed" of each node on CAN bus must be consistent, and "address" setting and resource mapping can't conflict, otherwise, communication will fail or be wrong.
- (6) For above command details and other commands, please refer to <u>"RTBasic Programming Manual".</u>

2.5. IN Digital Input Interface

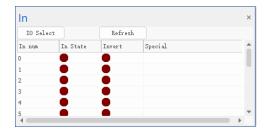

Digital inputs are distributed in J400 (IN0-IN7) and X400 (IN8-IN39).

→ Specification:

Item	High-speed input (IN0-IN7)	Low-speed input (IN8-IN39)	
Input method	NPN type (triggered	by low electric level)	
Input frequency	<400KHz	<5KHz	
Impedance	4.7ΚΩ	4.7ΚΩ	
Voltage to open	≤24V	≤24V	
Communication	,	√ (X400 is one non-isolated	
Distance	√	signal)	

→ Wiring:

General Input Wiring (for single-ended encoder-axis wiring, please refer to "Single-Ended Interface".



NOTES

- Digital input wiring is shown above, external load can be button switch, or sensor, or others, they need to match signals correctly.
- It is recommended to use the same one power supply of load and controller,
 otherwise, it needs to connect to negative poles of two powers.
- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 30cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

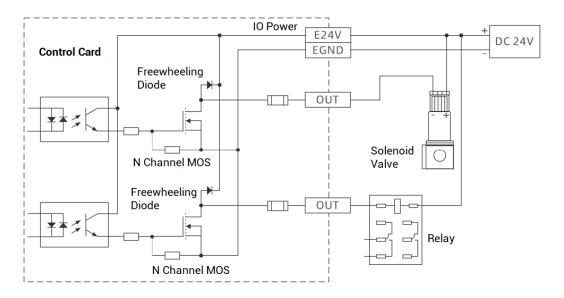
→ Usage:

- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) Read state value of related IN through "IN" command, or through "RTSys Tool IN to check.

- (3) Configure latch function through "REGIST", "REG_POS", "REG_INPUTS" commands.
- (4) Set axis positive/negative position limit signa / origin signal through "FWD_IN", "REV_IN", "DATUM_IN" commands.
- (5) For above command details and other commands, please refer to <u>"RTBasic Programming Manual".</u>

2.6. OUT Digital Output Interface

Digital outputs are distributed in signal interfaces of J400 (OUT0-7) and X400 (OUT8-OUT39).


$\rightarrow \textbf{Specification:}$

Item	High-speed output	Low-speed output	
	(OUT0-7)	(OUT8-39)	
Output method	NPN T	ype	
Output frequency	<400KHz	<8KHz	
Load Voltage	≤24V	≤24V	
Current	≤300mA	≤300mA	
Overcurrent Protection	√	√	
Communication Distance	√	√ (X400 is one non-	
Communication distance	V	isolated signal)	

\rightarrow Wiring:

General output Wiring (for single-ended encoder-axis wiring, please refer to "Single-

Ended Interface".

NOTES

- Digital output wiring is shown above, external load can be the relay, or solenoid valve,
 or others. Please note their signals should be matched.
- It is recommended to use the same one power supply for load and controller,
 otherwise, it needs to connect to negative poles of two powers.
- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 30cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

→ Usage:

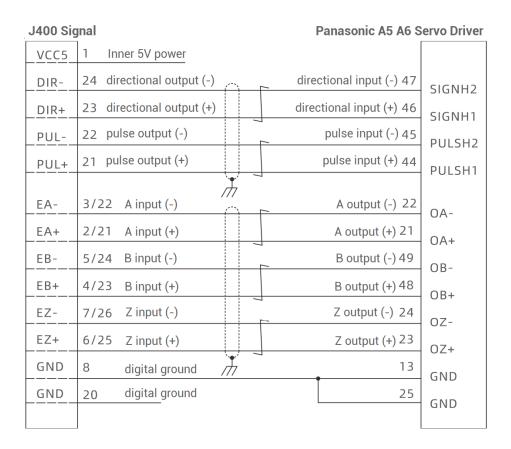
- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) ON / OFF output ports through OP command directly, or through "RTSys Tool OP.

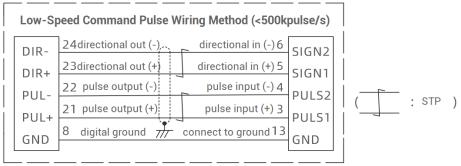
- (3) It supports PWM function. PWM frequency is set through "PWM_FREQ" command, and PWM duty cycle is set through "PWM_DUTY".
- (4) It also supports hardware comparison output function, which is opened and configured by "HW_PSWITCH2" command.
- (5) When it is used as pulse-axis, the usage is same as AXIS. For more details, please check <u>"usage" in "2.8 single-ended axis interface".</u>
- (6) For above command details and other commands, please refer to "RTBasic Programming Manual".

2.7. Local-Axis Interface

Differential pulse output interfaces and differential input interfaces are distributed into J400, and the connection is built through wiring board. For specific information, please go to <u>"J400 Singal Interface".</u>

\rightarrow Specification:

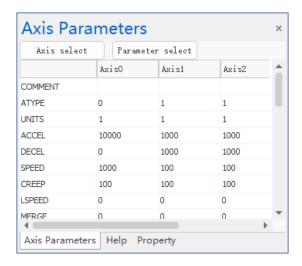

J400 signal interface includes one differential pulse output interface, and one differential encoder feedback.


Signal	Item	Description	
PUL+/PUL- DIR+/DIR-	Signal Type	Differential Output Signal	
	Signal Volage Range	0-5V	
DINT/DIN-	Signal Max Frequency	10MHz	

	Isolation	Non-isolation
EA+/EA-	Signal Type	Differential Input Signal
EB+/EB-	Signal Volage Range	0-5V
EZ+/EZ-	Signal Max Velocity	10Mbps
VCC5, GND Max Output Current for 5V Power		50mA

→ Wiring:

Wiring of differential pulse-axis and differential encoder-axis (take Panasonic A5 and A6 as the example):



NOTES

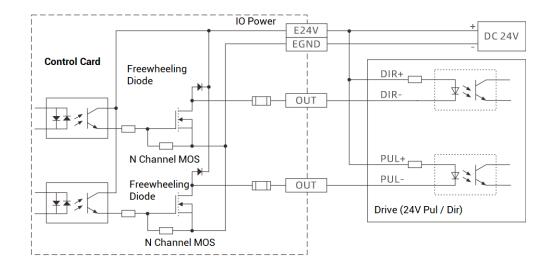
- Local-axis interface wiring is shown above, but it may differ from drive models,
 please wire them carefully.
- While using differential signals, both grounding sides must be connected, then it can make sure communication stability and device safety.
- Please use STP (shielded twist pair), especially when the environment is not good,
 please make the shield layer be grounded fully.

→ Usage:

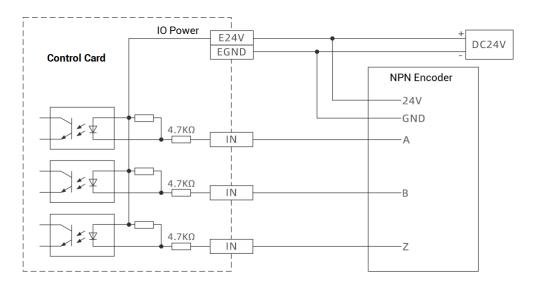
- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) Set basic parameters through corresponding commands, like, BASE, ATYPE, UNITS, SPEED, ACCEL, DECEL, etc. In addition, remap axis No. through AXIS_ADDRESS command, enable through AXIS_ENABLE, and run linear motion through MOVE.
- (3) If you need to check or configure above parameters directly, go to "RTSys View Axis Parameters" window. What's more, in "RTSys Tool Manual" window, it can operation and control axis motion directly.

(4) For above command details and other commands, please refer to "RTBasic Programming Manual".

2.8. Single-Ended Axis Interface


Single-ended pulse output interface and single-ended encoder input interface are distributed in IO signal of J400, they are connected through wiring boar. For specific information, please go to "J400 Singal Interface".

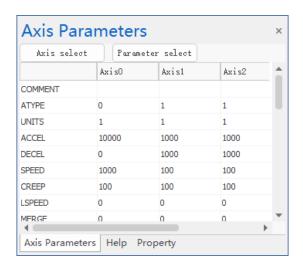
$\rightarrow \textbf{Specification:}$


Item	Description	
Pulse / Directional (PUL/DIR) Signal Type	Single-ended output signals	
Pulse / Directional (PUL/DIR) Signal Voltage Range	0-24V	
Pulse / Directional (PUL/DIR) Signal Max Frequency	<500kHz	
Encoder (A/B/Z) Signal Type	Single-ended input signals	
Encoder (A/B/Z) Signal Voltage Range	0-24V	
Encoder (A/B/Z) Signal Max Frequency	<100kHz	
Isolation	Isolated	

\rightarrow Wiring:

■ Single-Ended Pulse Wiring Reference (take OUT2 and OUT3 as the example):

■ Single-Ended Encoder Wiring Reference (take IN6, IN7, and IN3 as the example):



NOTES

- Local-axis interface wiring is shown above, but it may differ from drive models,
 please wire them carefully.
- For pulse directional interface of 5V drive, please connect drive PUL+ and DIR+ to E5V interface.
- Please use STP (shielded twist pair), especially when the environment is not good,
 please make the shield layer be grounded fully.

→ Usage:

- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) Set basic parameters through corresponding commands, like, BASE, ATYPE, UNITS, SPEED, ACCEL, DECEL, etc. In addition, remap axis No. through AXIS_ADDRESS command, enable through AXIS_ENABLE, and run linear motion through MOVE.
- (3) If you need to check or configure above parameters directly, go to "RTSys View Axis Parameters" window. What's more, in "RTSys Tool Manual" window, it can operation and control axis motion directly.

(4) For above command details and other commands, please refer to "RTBasic Programming Manual".

2.9. EtherCAT Bus Interface / Ethernet

This interface can be used as EtherCAT interface to connect to bus device, also can be used as Ethernet. But please note EtherCAT and EtherNET can't be used synchronously.

\rightarrow Specification:

-- As EtherCAT Bus Interface--

PIN				Item	Description
	5111	a: 1		Communication	EtherCAT
	PIN 1	Signal TX+	Description Send signal (+)	protocol	Luieloni
	2	TX- RX+	Send signal (-) Receive signal (+)	Communication speed Refresh Period	100Mbps
	4	NC	Reserved		Max 500us
	5 6	NC RX-	Reserved Receive signal (-)		Category 5e STP
	7	NC	Reserved	Communication cable	(shielded twist pair)
	8	NC	Reserved	Communication length	Recommended <50m

--As EtherNET Interface--

PIN				Item	Description
	PIN	Signal	Description Send signal (+)	Communication protocol	MODBUS_TCP
	2	TX- RX+	Send signal (-) Receive signal (+)	Communication speed	100Mbps
	4	NC	Reserved	Default IP	192.168.0.11
	5 6	NC RX-	Reserved Receive signal (-)	0	Category 5e STP
	7	NC NC	Reserved	Communication cable	(shielded twist pair)
o IVC neserveu			neserved	Communication length	Recommended <50m

\rightarrow Wiring:

-- As EtherCAT Bus Interface--

> When connecting to EtherCAT bus drive or other slave station devices, it can connect

to EtherCAT IN port of behind device through one category 5e shielded cable, and multi-level expansion can be achieved by connecting to EtherCAT OUT port of this slave station device to EtherCAT IN port of next slave device.

EtherNET LED:

LED STATUS	Commonly-ON	Shrink
Green	Build the 100M communication	While receiving and
Yellow	Build the 10M communication	sending data

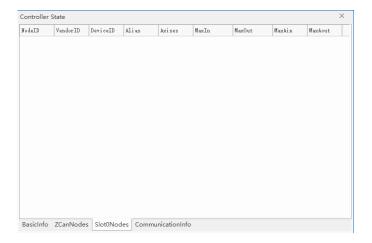
-- As EtherNET Interface--

- Controller Ethernet can be connected to PC, HMI by point-to-point connection through one category 5e shielded cable.
- Controller also can be connected to the interchanger, that is, through the interchanger, expand the Ethernet channel and connect to other devices, then achieve multi-to-point connection.

> EtherNET LED:

LED STATUS	Commonly-ON	Shrink
Green	Build the 100M communication	While receiving and
Yellow	Build the 10M communication	sending data

NOTES


- Please use category 5e shielded cable, especially in bad environment, to promote signal interference.
- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 30cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

→ Usage:

--As EtherCAT Bus Interface--

- (1) Please wiring correctly and power on, then connect controller to RTSys through "PCI".
- (2) How to connect to the driver device through EtherCAT bus:
 - a) Use SLOT_SCAN command to scan the slot No. on the bus.
 - b) Use AXIS_ADDRESS command to map axis No., it can refer to <u>3.2 EtherCAT</u>

 <u>expansion resources mapping.</u>
 - c) Use SLOT_START command to open the bus or use SLOT_STOP to close the bus.
 - d) When connection is done, if you need to configure and operate local pulse axes, please refer to <u>2.7 local axis interface usage</u>.
- (3) How to connect to expansion module through EtherCAT bus:
 - a) Use SLOT_SCAN command to scan the slot No. on the bus.
 - b) Use AXIS_ADDRESS command to map axis No., and use NODE_IO/NODE_AIO to map IO No., they can be referred from <u>3.2 EtherCAT expansion - resources</u> <u>mapping.</u>
 - c) Use SLOT_START command to open the bus or use SLOT_STOP to close the bus.
 - d) When all are done, if you need to configure and operate local IO and axes, please refer to 2.5 & 2.6 & 2.7 usage.
- (4) Check slot No. node information directly and clearly through RTSys controller state the controller Slot0Node.

(5) For above command details and other commands, please refer to "RTBasic Programming Manual".

--As Ethernet Interface--

- (1) Please wiring correctly and power on, then connect controller to RTSys by "Ethernet".
- (2) It can modify controller IP through "IP_ADDRESS" command, please attention controller IP address and PC IP address should be in the same network segment.
- (3) Support custom ethernet communication, it can use "OPEN #" command to do custom ethernet communication, and use "CLOSE #" to close it. In addition, data in the custom ethernet channel can be read and saved by "GET #" command.
- (4) For above command details and other commands, please refer to "RTBasic Programming Manual".

2.10. DIP Switch

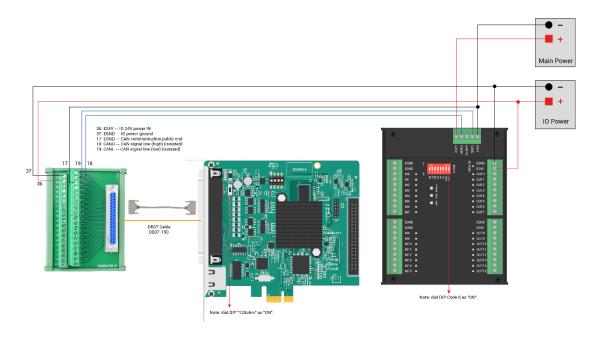
This control card has one DIP switch (dial code). Please see below functions and usage.

$\rightarrow \textbf{Usage:}$

DIP switch S200 is used to set ID of PCI464. Control card ID can be checked by sending "ID_PCICARD" command in RTSys.

Form of relationship between code state and ID (ON = 1):

Code 1	Code 2	Code 3	Code 4	Card ID
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15


Chapter III Resources Expansion

When there are no enough local resources in this card, it can expand more through CAN bus or EtherCAT bus.

3.1.10 CAN Bus Expansion

There are three kinds of CAN bus expansion modules to extend more IOs, analog IOs, and axes (up to 2 for axis), they are ZIO, ZAIO, and ZMIO310-CAN. Therefore, it only needs to use the expansion module according to your specific requirements, and then to do IO mapping or axis mapping, but please attention mapping No., they should be assigned appropriately.

→ Wiring:

NOTES

- Control card and expansion module share the main power supply, but IO power supplies of ZIO and ZMIO310-CAN need to be supplied independently for isolation.
- 120-ohm resistor on CAN bus is controlled by DIP switch (dial code, which is near to J400), dial it as ON.

 When there are multiple expansion modules connected on the CAN bus, please connect to each one 120ohm resistor on the two ends of CAN bus (CANH and CAHL) in parallel, in this way, impendence can be matched. If the expansion module has 8code, it only needs to dial code 8 as ON.

→ Resources Mapping:

DIP Switch

The CAN expansion module generally has an 8-code DIP switch used for communication configuration and resources mapping, dial ON to take effect, and the meaning of the DIP is as follows:

- 1-4: CAN module address ID, the combination value is 0-15 (from 4-digit binary to decimal system)
 - Dial code 1-4 to select CAN module address ID. The controller automatically maps expansion module's IO No. range according to this address ID, but for axis No., please map it manually.
- 5-6: CAN communication speed, the combination value is 0-3 (from 2-digit binary to decimal system), there are four options.

Code 6	Code 5	DIP 5-6 combination value	CAN communication speed
0	0	0	500KBPS (default value)
0	1	1	250KBPS
1	0	2	125KBPS
1	1	3	1MBPS

7: reserved

• 8: 120-ohm resistor, dial it as ON = one 120-ohm resistor is connected between CANL and CANH.

> IO Mapping

CAN expansion module IO mapping is determined by code 1-4, and below shows digital IO and analog IO mapping No.:

IO Mapping

Code 4	Code 3	Code 2	Code 1	Card ID	Starting IO No.	End IO No.
0	0	0	0	0	16	31
0	0	0	1	1	32	47
0	0	1	0	2	48	63
0	0	1	1	3	64	79
0	1	0	0	4	80	95
0	1	0	1	5	96	111
0	1	1	0	6	112	127
0	1	1	1	7	128	143
1	0	0	0	8	144	159
1	0	0	1	9	160	175
1	0	1	0	10	176	191
1	0	1	1	11	192	207
1	1	0	0	12	208	223
1	1	0	1	13	224	239
1	1	1	0	14	240	255
1	1	1	1	15	256	271

 AIO Mapping (code 1 – code 4 state and corresponding address ID, please refer to above form)

Address ID	Starting AD No.	End AD No.	Starting DA No.	End DA No.
0	8	15	4	7
1	16	23	8	11

2	24	31	12	15
3	32	39	16	19
4	40	47	20	23
5	48	55	24	27
6	56	63	28	31
7	64	71	32	35
8	72	79	36	39
9	80	87	40	43
10	88	95	44	47
11	96	103	48	51
12	104	111	52	55
13	112	119	56	59
14	120	127	60	63
15	128	135	64	67

Axis Mapping:

When the CAN bus expansion mode is used to expand the pulse axis, 2 axes can be expanded at most. And these two pulse axes can be accessed after mapping and binding with axis No. through AXIS_ADDRESS.

AXIS_ADDRESS(axis No. to be mapped)=(32*axis No. on expansion module)+ID

 $AXIS_ADDRESS(6)=(32*0)+2$

'map axis 0 of CAN expansion module whose ID is 2 as axis 6


AXIS_ADDRESS(7)=(32*1)+2

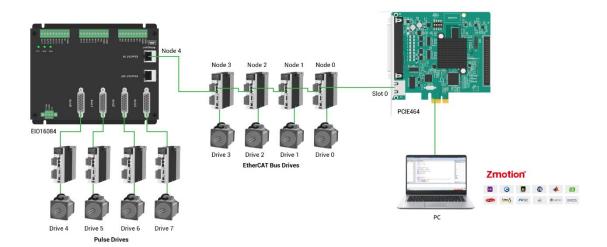
'map axis 1 of CAN expansion module whose ID is 2 as axis 7

For more command details and other commands, please refer to "RTBasic Programming Manual".

Expanded Resources Checking

Connect controller to RTSys, then open "controller – state the controller – ZcanNodes" window. In this window, all expansion modules' ID and corresponding mapping No. can be viewed clearly.

3.2. EtherCAT Bus Expansion


There are EIO and ZMIO310-ECAT EtherCAT bus expansion modules to expand digital IO / analog IO / axis.

→ Wiring:

While wiring, use one category 5e shielded twist pair to connect controller EtherCAT to EtherCAT IN port of next expansion device, and then EtherCAT OUT port of this expansion device can be connected to next slave device's EtherCAT IN port for multi-level expansion.

When each EIO expansion module completes wiring, no need to second develop, it only needs to map module IO No. and axis No. on the controller EtherCAT.

--EIO Expansion Module Wiring Reference--

No. and corresponding meaning:

Slot No. (slot)

"slot" means bus interface No. on the controller, EtherCAT bus slot No. is 0.

Device No. (node)

"node" means all device No. connected one slot, starting from 0, and it will automatically number according to the device connection sequence on the bus. How many devices in total connected on the bus can be checked through NODE_COUNT(slot) command.

Drive No.

Controller will automatically identify the drive on the slot, starting from 0, and also they are numbered automatically according to the drive connection sequence on the bus.

Please note drive No. and device No. are different. Drive No. is only for driver on the slot, IO and other interfaces are not included. When mapping axis No., it will use drive No.

→ Resources Mapping:

IO Mapping

EtherCAT expansion module IO mapping is set by code NODE_IO and NODE_AIO commands.

Before mapping IO, please check controller local max IO No. (there are general IO interface and specialized IO interface). Then assign expansion IO No. in order.

Note: IO No. on the bus can't be the same, otherwise, both are valid.

Digital IO Mapping

Example: NODE_IO (0,0) = 32 'set device 0's IO starting No. as 32

Analog IO Mapping

Example: NODE_AIO (0,0,3) = 3 'set device 0's AIN starting No. as 3

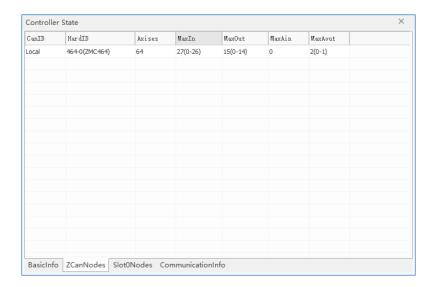
For more command details and other commands, please refer to "ZBasic Programming Manual".

Axis Mapping:

When the CAN bus expansion mode is used to expand the pulse axis, 2 axes can be expanded at most. And these two pulse axes can be accessed after mapping and binding with axis No. through AXIS_ADDRESS.

For EtherCAT bus expansion module axis mapping, also, the axis No. in the whole system can't repeat. The operation command is:

AXIS_ADDRESS(axis No.)=(slot No.<<16)+drive No.+1

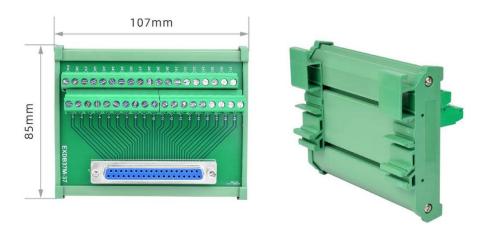

AXIS_ADDRESS(6)=(0<<16)+0+1 'the first ECAT driver, drive No. is 0, bind it with axis 6

AXIS_ADDRESS(7)=(0<<16)+1+1 'the second ECAT driver, drive No. is 1, bind it with axis 7

For more command details and other commands, please refer to "RTBasic Manual".

Expanded Resources Checking

Connect controller to RTSys, then open "controller – state the controller – ZcanNodes" window. In this window, all expansion modules' ID and corresponding mapping No. can be viewed clearly.


There are many EtherCAT bus commands, please refer to "RTBasic Programming Manual".

Chapter IV Accessories

For PCIE464 motion control card, it can use with IO accessories together, order below accessories as needed.

4.1. EXDB37M-37 Wiring Board

EXDB37M-37 wiring board is for J400 signal interface, using DB37 cable to connect the J400. For this specification, please refer to J400 signal interface specification.

4.2. DB37-150 Shielded Cable

- Use DB37-150 shielded cable to connect J400 signal interface to EXDB37-37 wiring board, which is convenient for users to install and wire
- Use DB37-150 shielded cable to connect ZP72-02 wiring cable CN1 interface to ACC37 wiring board, which is convenient for users to install and wire

DB37-150 cable is one 37-pin male-to-male full contact, that is, they are corresponding and with shield. The cable length is 1.5 meters.

4.3. ACC37 Wiring Board

ACC37 is the wiring board for X400 signal, using flat wiring cable and DB37 to connect to X400. For this wiring board specification, please refer to X400 signal interface specification.

Size: 144mm*104mm

When users need more IO, ACC37-7103 can be purchased together. It can be up to 16 inputs and 16 outputs. While using adapter board, it also needs DC24V power to supply for adapter board.

If there are more other inputs and outputs:

Model	Specification
ACC37-2408M	24 inputs (IN8-31) & 8 outputs (OUT8-15)
ACC37-3200M	32 inputs (IN8-39)
ACC37-0824M	8 inputs (IN8-15) & 24 outputs (OUT8-31)
ACC37-0032M	32 outputs (OUT8-39)

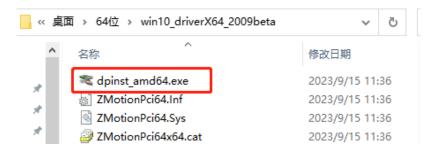
4.4.ZP72-02 Adapter Cable

The 40P X400 socket of the control card can be converted to DB37 through the ZP72-02 conversion cable, and can be installed on the card slot of the IPC for easy wiring. Connect CN1 to DB37-150 cable, connect CN2 to X400.

Chapter V Installation

5.1. PCIE464 Installation

Install steps:

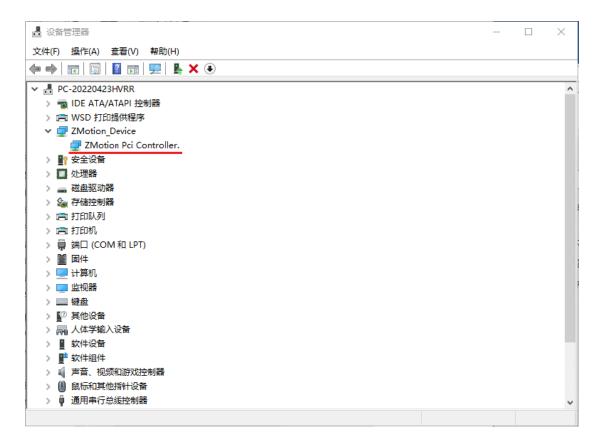

- 1. Turn off the PC power.
- 2. Open the computer case, select a free PCIE card slot, and use a screwdriver to remove the corresponding baffle strip.
- 3. Insert the motion control card into the slot securely, and tighten the fixing screws on the baffle strip.

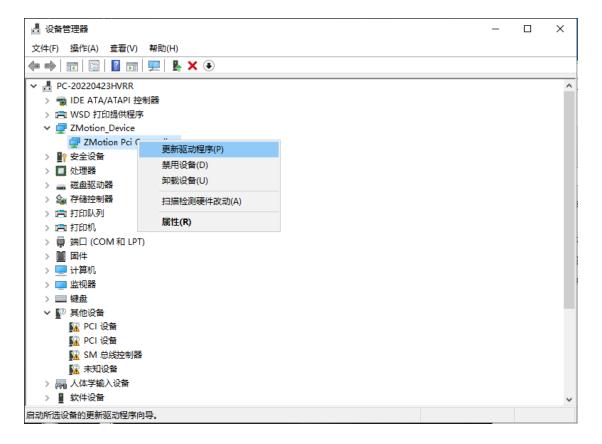
Note: While connecting to control card, the PC / IPC must be in non-sleep state (In windows setting, "power & sleep", set the "time" as "never"). If it is in the state of "sleep", you can prohibit the PCIE drive in "device manager", then open it.

5.2. Drive Program Installation

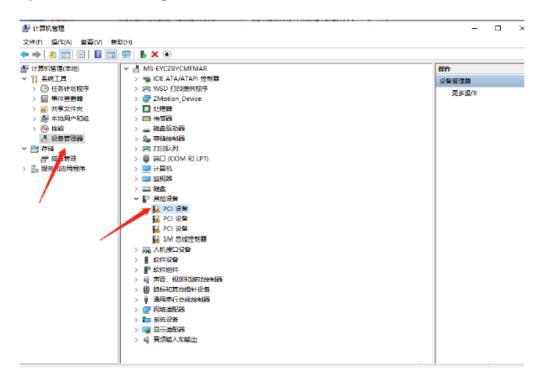
Method 1: install automatically

 use the built-in installation wizard software "dpinst_amd64.exe" in the driver directory to automatically install, and the specific operation is according to the software guide.
 For PCIE signed drive installation package, please contact us.

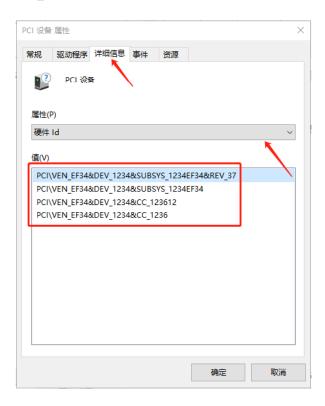

b. when hardware was installed, open the PC, at this time, Windows will detect the motion control card automatically, then please open "find new hardware wizard", and click "next":


c. after clicking "next", it is installing. If there is antivirus software or safety manager risk tip, please allow them, or you could exit corresponding software before install. When installed, below window will appear:

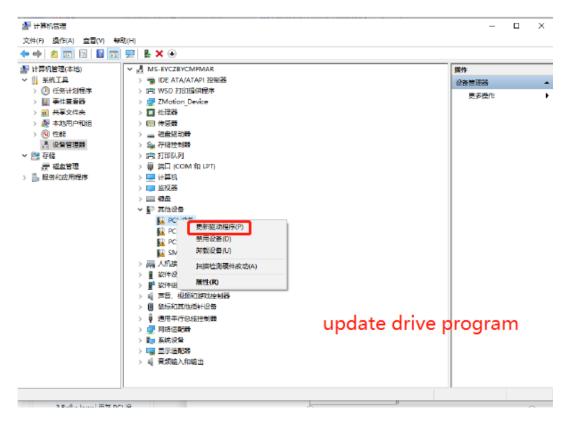
d. open device manager, it can be seen it is installed successfully.

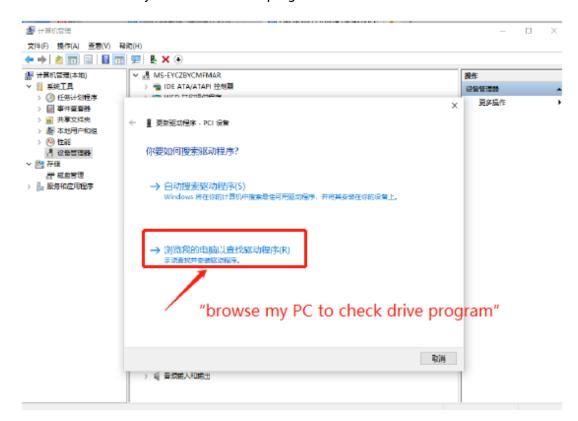


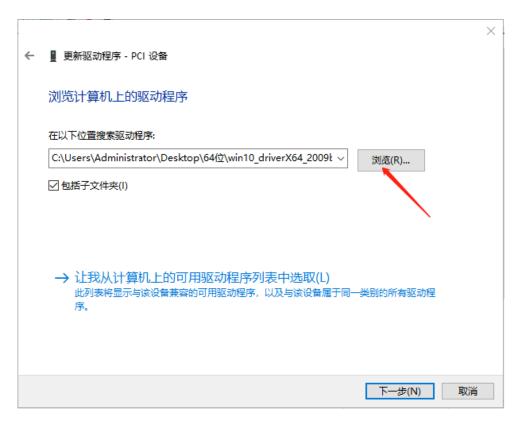
Note: if there is no drive program detected by Windows automatically after opening PC, or the drive program is removed, you could manually update drive program in device manager, then do above step by step.

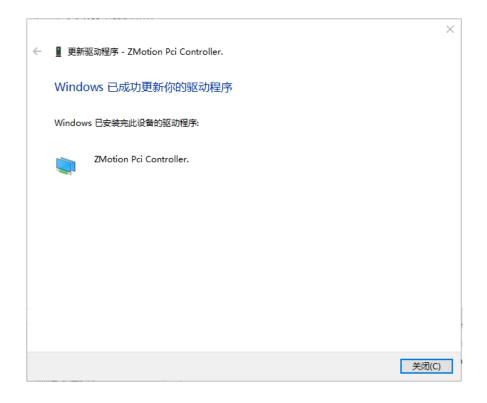


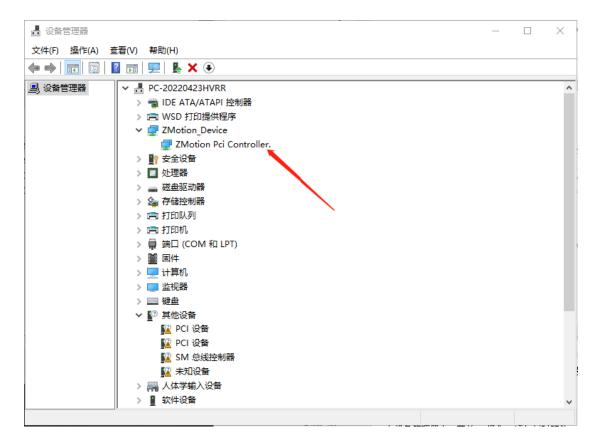
Method 2: install manually


a. open the Device Manager menu and select the PCI device in Other Devices.


b. if there are multiple PCI devices, right-click "Properties" to view detailed information, select "Hardware ID" for properties, and confirm that it is a PCI device starting with PCI\VEN_EF34&DEV_1234&.


c. find PCI Device, right-click to select "update drive program".

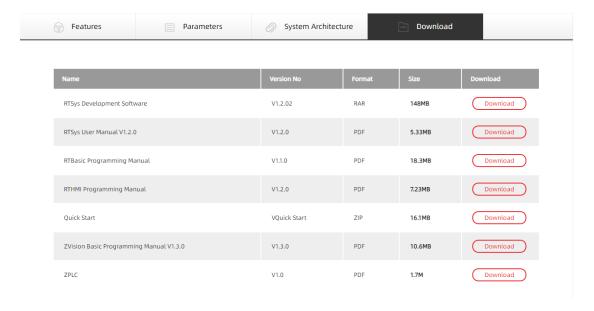

d. select "browse my PC to check drive program".

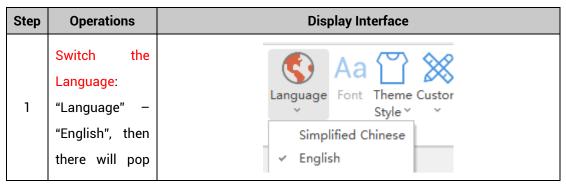

e. click "browse", and select driver folder. Then, click "next".

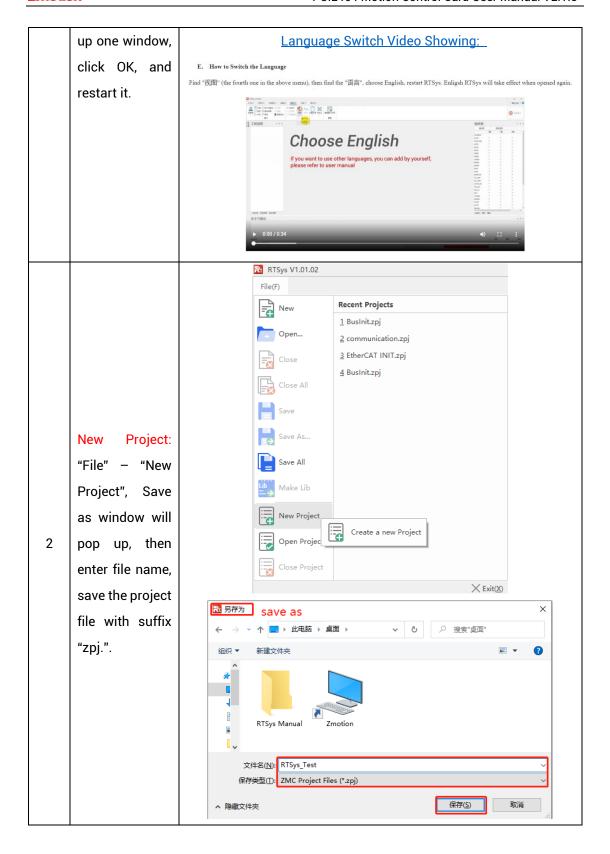
f. If there is antivirus software or safety manager risk tip during installing, please allow them, or you could exit corresponding software before install. When installed, below window will appear:

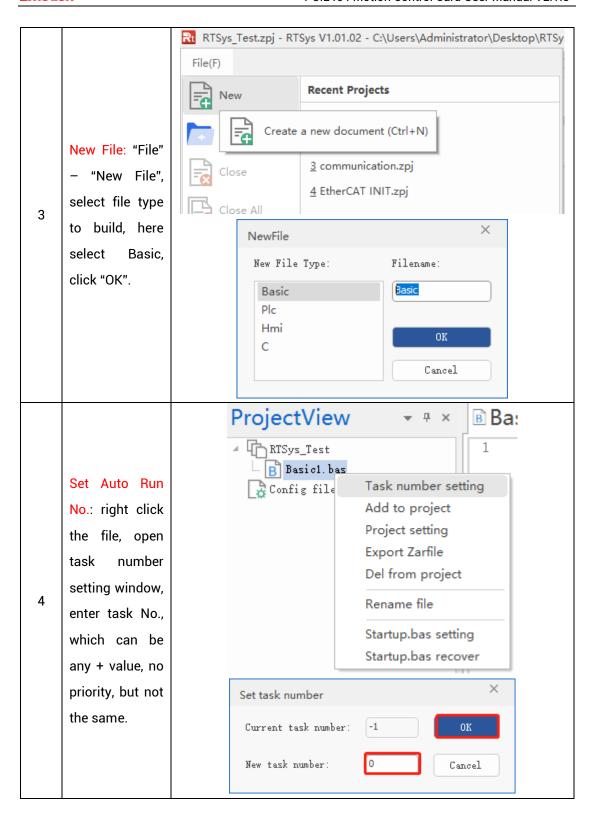
g. If there is "Zmotion Pci Controller" in the device manager, the installation is successful.

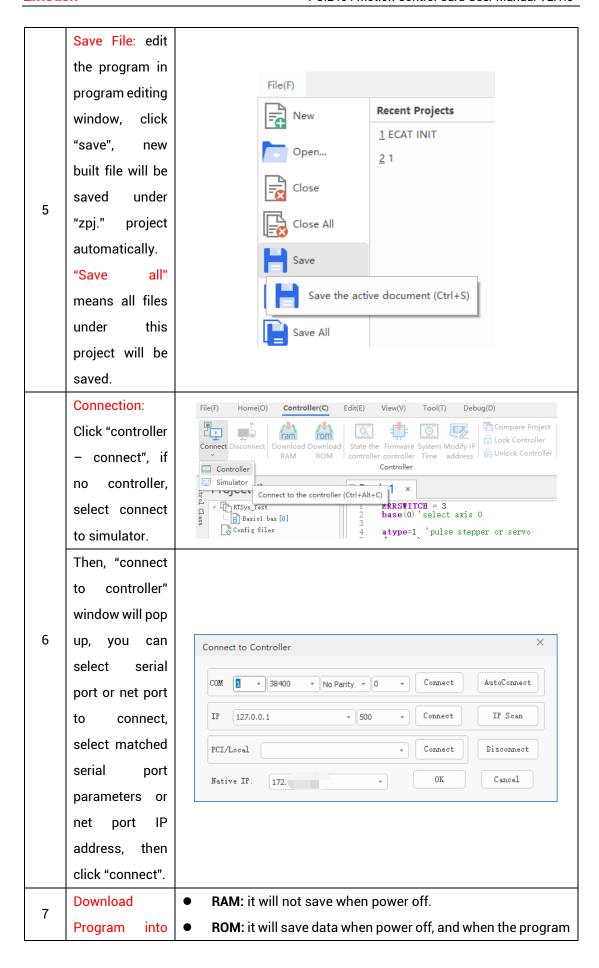
Chapter VI Programming

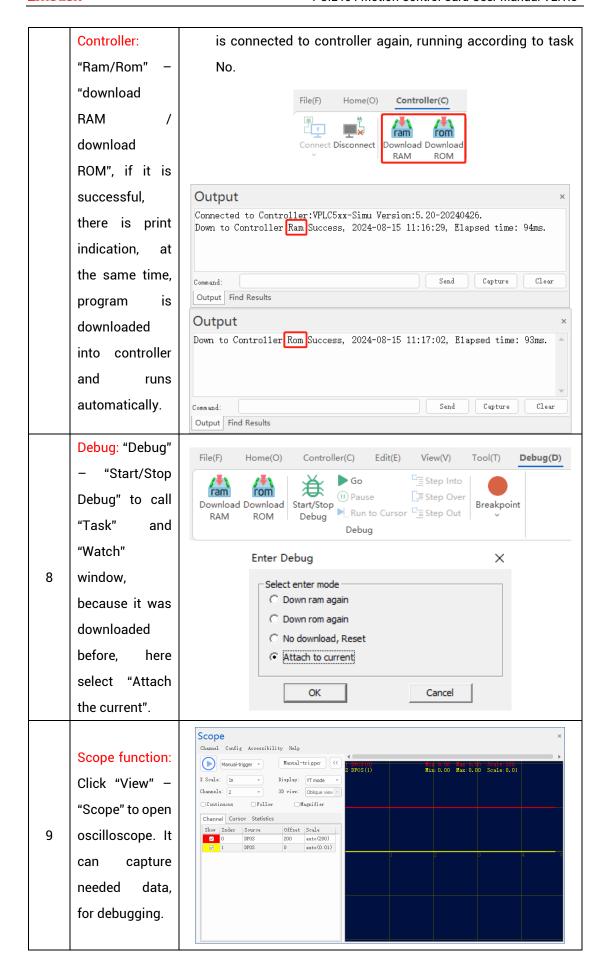

6.1. Program in RTSys Software


RTSys is a PC-side program development, debugging and diagnostic software for the Zmotion motion controllers. Through it, users can easily edit and configure the controller program, quickly develop applications, diagnose system operating parameters in real time, and debug the running program in real time. What's more, it supports Chinese and English bilingual environments.


In RTSys, there are 4 programming languages for motion control development, Basic, PLC, HMI and C language, they can run multi-tasks among them, especially for Basic, multi-task running can be achieved separately, hybrid programming is also OK with PLC, HMI and C language.


RTSys Downloading Address: https://www.zmotionglobal.com/pro_info_282.html


And related manuals can be found in "Download":



Notes:

- When opening an project, choose to open the zpj file of the project. If only the Bas file
 is opened, the program cannot be downloaded to the controller.
- When the project is not created, only the Bas file cannot be downloaded to the controller.
- The number 0 in automatic operation represents the task number, and the program runs with task 0, and the task number has no priority.
- If no task number is set for the files in the entire project, when downloading to the controller, the system prompts the following message WARN: no program set autorun

6.2. Upgrade Controller Firmware

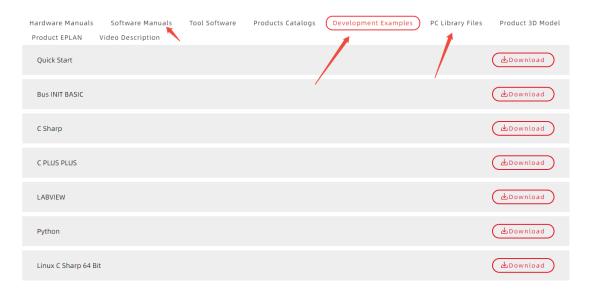
Firmware upgrade can be achieved by downloading zfm firmware package in RTSys. zfm file is the firmware upgrade package of controller, please select corresponding firmware because different models are with different packages, please contact manufacturer).

How to update:

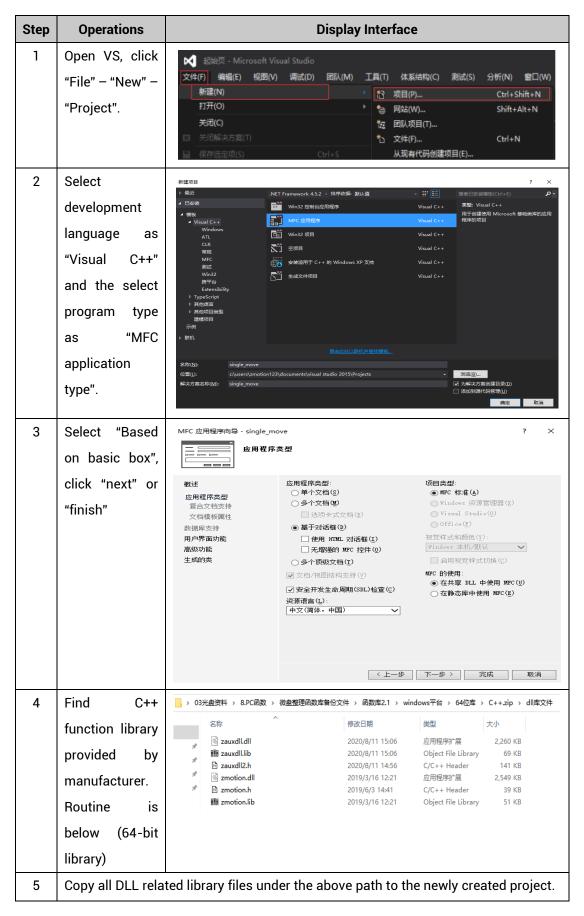
- a. Open <u>ZDevelop</u> / <u>RTSys</u> software, then click "controller connect", find PCI/LOCAL method, click "connect". If connected, there will be "Connected to Controller: PCIE464 Version: 4.93 20231220." In "output" window.
- b. Click "controller state the controller", find basic info, then current software version can be checked.
- c. Click "controller update firmware", current controller model and software version can be viewed.
- d. Click "browse", and select saved firmware file, click "update", then one window will pop up, please click "ok".
- e. After that, "connect to controller" window appears again, and please select "PCI/Local" again, and click "connect".
- f. When connection is successful, "firmware update" interface is shown. Now

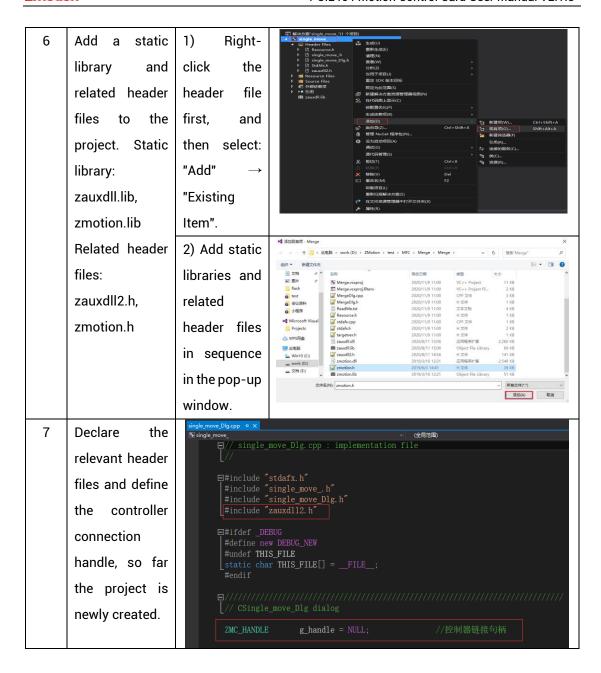
system enters ZBIOS state, please click "update" again.

- g. When it is loaded, "firmware update" window disappears, now in output window, it shows "Update firmware to Controller Success".
- h. Do step a and step b again, check whether the firmware is updated or not.


6.3. Program in Host-Computer by PC Languages

The controller supports development under various operating systems such as windows, linux, Mac, Android, and wince, and provides dll libraries in various environments such as vc, c#, vb.net, and labview, as shown in the figure below. PC software programming refers to "Zmotion PC Function Library Programming Manual".




The program developed using the PC software cannot be downloaded to the controller, and it is connected to the controller through the dll dynamic library. The dll library needs to be added to the header file and declared during development.

Get PC library file, example: https://www.zmotionglobal.com/download_list_17.html

The c++ project development process in VS is as follows:

Chapter VII Operation and Maintain

The correct operation and maintenance of the device can not only guarantee and extend the life cycle of the equipment itself, but also take technical management measures according to the pre-specified plan or the corresponding technical conditions to prevent equipment performance degradation or reduce the probability of equipment failure.

7.1. Regular Inspection and Maintenance

The working environment has an impact on the device. Therefore, it is usually inspected regularly based on the inspection cycle of 6 months to 1 year. The inspection cycle of the device can be appropriately adjusted according to the surrounding environment to make it work within the specified standard environment.

Check item	Check content	Inspection standards
power supply	Check whether the voltage is rated	DC 24V (-5%~5%)
surroundings	Whether the ambient temperature is within the specified range (when installed in the cabinet, the temperature inside the cabinet is the ambient temperature)	-10°C - 55°C
	Whether the ambient humidity is within the specified range (when installed in the cabinet, the humidity in the cabinet is the ambient humidity)	10%-95% non-condensing
	Is there direct sunlight	No
	With or without droplets of water, oil, chemicals, etc.	No
	Whether there is dust, salt, iron filings, dirt	No
	Whether there is corrosive gas	No
	Whether there are flammable and	No

	explosive gases or articles	
	Whether the device is subjected to vibration or shock	Should be within the range of vibration resistance and impact resistance
	Is the heat dissipation good	Keep good ventilation and heat dissipation
Installation and Wiring Status	Whether the basic unit and the expansion unit are installed firmly	The mounting screws should be tightened without loosening
	Whether the connecting cables of the basic unit and the expansion unit are fully inserted	The connection cable cannot be loosened
	Are the screws of the external wiring loose	Screws should be tightened without loosening
	Whether the cable is damaged, aged, cracked	The cable must not have any abnormal appearance

7.2. Common Problems & Solutions

Problems	Suggestions	
Motor does not rotate.	1. Check whether the ATYPE of the controller is correct.	
	2. Check whether hardware position limit, software	
	position limit, alarm signal work, and whether axis	
	states are normal.	
	3. Check whether motor is enabled successfully.	
	4. Confirm whether pulse amount UNITS and speed	
	values are suitable. If there is the encoder feedback,	
	check whether MPOS changes.	
	5. Check whether pulse mode and pulse mode of drive	
	are matched.	
	6. Check whether alarm is produced on motion	
	controller station or drive station.	
	7. Check whether the wiring is correct.	
	8. Confirm whether controller sends pulses normally.	
The position limit signal	1. Check whether the limit sensor is working normally,	

is invalid.		and whether the "input" view can watch the signal	
		change of the limit sensor.	
	2.	Check whether the mapping of the limit switch is	
		correct.	
	3.	Check whether the limit sensor is connected to the	
		common terminal of the controller.	
	1.	Check whether the limit sensor is working normally,	
		and whether the "input" view can watch the signal	
No signal sames to the		change of the limit sensor.	
No signal comes to the	2.	Check whether the mapping of the limit switch is	
input.		correct.	
	3.	Check whether the limit sensor is connected to the	
		common terminal of the controller.	
	1.	Check whether IO power is needed.	
The output does not work.	2.	Check whether the output number matches the ID of	
		the IO board.	
	1.	Check whether the power of the power supply is	
		sufficient. At this time, it is best to supply power to	
POWER led is ON, RUN led		the controller alone, and restart the controller after	
is OFF.		adjustment.	
	2.	Check whether the ALM light flickers regularly	
		(hardware problem).	
RUN led is ON, ALM led is	1.	Program running error, please check RTSys error	
ON.		code, and check application program.	
	1.	Check the CAN wiring & power supply circuit, whether	
		the 120-ohm resistor is installed at both ends.	
	2.	Check the master-slave configuration,	
		communication speed configuration, etc.	
CAN expansion module	3.	Check the DIP switch to see if there are multiple	
cannot be connected.		expansion modules with the same ID.	
	4.	Use twisted-pair cables, ground the shielding layer,	
		and use dual power supplies for severe interference	
		(the main power supply of the expansion module and	
		the IO power supply are separately powered)	